
Jaxl Documentation
Release 3.1.0

Abhinav Singh

Sep 27, 2017

Contents

1 Users Guide 3
1.1 Getting Started . 3
1.2 JAXL Instance . 5
1.3 ./jaxlctl . 8
1.4 Logging Interface . 9
1.5 Cron Jobs . 9

2 XMPP Users Guide: 11
2.1 XMPP Examples . 11
2.2 Xml Objects . 13
2.3 XMPP Extensions (XEP) . 16

3 HTTP Users Guide: 17
3.1 HTTP Examples . 17
3.2 HTTP Extensions . 19

i

ii

Jaxl Documentation, Release 3.1.0

Jaxl v3.x is a successor of v2.x (and is NOT backward compatible), carrying a lot of code from v2.x while throwing
away the ugly parts. A lot of components have been re-written keeping in mind the feedback from the developer
community over the last 4 years. Also Jaxl now shares a few philosophies from my experience with erlang and python
languages.

Jaxl is an asynchronous, non-blocking I/O, event based PHP library for writing custom TCP/IP client and server
implementations. From it’s previous versions, library inherits a full blown stable support for XMPP protocol stack. In
v3.0, support for HTTP protocol stack was also added.

At the heart of every protocol stack sits a Core stack. It contains all the building blocks for everything that we aim to
do with Jaxl library. Both XMPP and HTTP protocol stacks are written on top of the Core stack. Infact the source
code of protocol implementations knows nothing about the standard (inbuilt) PHP socket and stream methods.

Contents 1

Jaxl Documentation, Release 3.1.0

2 Contents

CHAPTER 1

Users Guide

Getting Started

Requirements

No external component or library is required. You simply need a standard PHP installation to work with Jaxl.

Library has been developed and tested extensively on linux operating systems. But there is no reason why it should
not work on other OS. File an issue if you face any glitches.

Install

Use Composer to install:

php composer.phar require “jaxl/jaxl=^3.1.0”

Then use autoloader in your application:

require dirname(__FILE__) . ‘/vendor/autoload.php’;

Library Structure

Jaxl library comprises of following packages:

• jaxl-core

contains generic networking and eventing components

• jaxl-xmpp

contains xmpp rfc implementation

• jaxl-xmpp-xep

contains various xmpp xep implementation

3

https://github.com/jaxl/JAXL/issues/new
https://getcomposer.org

Jaxl Documentation, Release 3.1.0

• jaxl-http

contains http rfc implementation

• jaxl-docs

this documentation comes from this package

• jaxl-tests

test suites for all the above packages

Inside Jaxl everything that you will interact with will be an object which will emit events and callbacks which we will
be able to catch in our applications for custom processing and routing. Listed below are a few main objects:

1. Core Stack

• JAXLLoop

main select loop

• JAXLClock

timed job/callback dispatcher

• JAXLEvent

event registry and emitter

• JAXLFsm

generic finite state machine

• JAXLSocketClient

generic tcp/udp client

• JAXLSocketServer

generic tcp/udp server

• JAXLXmlStream

streaming XML parser

• JAXLXml

custom XML object implementation

• JAXLLogger

logging facility

1. XMPP Stack

• XMPPStream

base xmpp rfc implementation

• XMPPStanza

provides easy access patterns over xmpp stanza (wraps JAXLXml)

• XMPPIq

xmpp iq stanza object (extends XMPPStanza)

• XMPPMsg

xmpp msg stanza object (extends XMPPStanza)

4 Chapter 1. Users Guide

Jaxl Documentation, Release 3.1.0

• XMPPPres

xmpp pres stanza object (extends XMPPStanza)

• XMPPXep

abstract xmpp extension (extended by XEP implementations)

• XMPPJid

xmpp jid object

1. HTTP Stack

• HTTPServer

http server implementation

• HTTPClient

http client implementation

• HTTPRequest

http request object

• HTTPResponse

http response object

Questions, Bugs and Issues

If you have any questions kindly post them on google groups. Groups are the quickest way to get an answer to your
questions which is actively monitored by core developers.

If you are facing a bug or issue, please report that it on github issue tracker. You can even contribute to the library if
you already have fixed the bug.

JAXL Instance

JAXL instance configure/manage other sub-packages. It provides an event based callback methodology on various
underlying object. Whenever required JAXL instance will itself perform the configured defaults.

Constructor options

1. jid

2. pass

3. resource

If not passed Jaxl will use a random resource value

4. auth_type

DIGEST-MD5, PLAIN (default), CRAM-MD5, ANONYMOUS

5. host

6. port

7. bosh_url

1.2. JAXL Instance 5

https://groups.google.com/forum/#!forum/jaxl
https://github.com/abhinavsingh/JAXL/issues/new

Jaxl Documentation, Release 3.1.0

8. log_path

9. log_level

ERROR, WARNING, NOTICE, INFO (default), DEBUG

10. force_tls

11. stream_context

12. priv_dir

Jaxl creates 4 directories names log, tmp, run and sock inside a private directory which defaults
to getcwd().'/.jaxl'. If this option is passed, it will overwrite default private directory.

Note: Jaxl currently doesn’t check upon the permissions of passed priv_dir. Make sure Jaxl
library have sufficient permissions to create above mentioned directories.

Available Event Callbacks

Following $ev are available on JAXL lifecycle for registering callbacks:

1. on_connect

JAXL instance has connected successfully

2. on_connect_error

JAXL instance failed to connect

3. on_stream_start

JAXL instance has successfully initiated XMPP stream with the jabber server

4. on_stream_features

JAXL instance has received supported stream features

5. on_auth_success

authentication successful

6. on_auth_failure

authentication failed

7. on_presence_stanza

JAXL instance has received a presence stanza

8. on_{$type}_message

JAXL instance has received a message stanza. $type can be chat, groupchat, headline,
normal, error

9. on_stanza_id_{$id}

Useful when dealing with iq stanza. This event is fired when JAXL instance has received response to
a particular xmpp stanza id

10. on_{$name}_stanza

Useful when dealing with custom xmpp stanza

11. on_disconnect

6 Chapter 1. Users Guide

Jaxl Documentation, Release 3.1.0

JAXL instance has disconnected from the jabber server

Available Methods

Following methods are available on initialized JAXL instance object:

1. get_pid_file_path()

returns path of JAXL instance pid file

2. get_sock_file_path()

returns path to JAXL ipc unix socket domain

3. require_xep($xeps = array())

autoload and initialize passed XEP’s

4. add_cb($ev, $cb, $priority = 1)

add a callback to function $cb on event $ev, returns a reference of added callback

5. del_cb($ref)

delete previously registered event callback

6. set_status($status, $show, $priority)

send a presence status stanza

7. send_chat_msg($to, $body, $thread = null, $subject = null)

send a message stanza of type chat

8. get_vcard($jid = null, $cb = null)

fetch vcard for bare $jid, passed $cb will be called with received vcard stanza

9. get_roster($cb = null)

fetch roster list of connected jabber client, passed $cb will be called with received roster stanza

10. start($opts = array())

start configured JAXL instance, optionally accepts two options specified below:

(a) --with-debug-shell

start JAXL instance and enter an interactive console

(b) --with-unix-sock

start JAXL instance with support for IPC and remote debugging

11. send($stanza)

send an instance of JAXLXml packet over connected socket

12. send_raw($data)

send raw payload over connected socket

13. get_msg_pkt($attrs, $body = null, $thread = null, $subject = null,
$payload = null)

14. get_pres_pkt($attrs, $status = null, $show = null, $priority = null,
$payload = null)

15. get_iq_pkt($attrs, $payload)

1.2. JAXL Instance 7

Jaxl Documentation, Release 3.1.0

./jaxlctl

Usage: ./jaxlctl command [options...]

jaxlctl is a control script that can be seen as a useful tool for:

• debugging daemons running in the background

• customize daemons on the fly

• monitoring daemons

• as a playground for learning XMPP/HTTP and Jaxl library itself

Type ./jaxlctl help to see list of available commands.

Note: Various commands are still experimental. Know what you are doing before using them in production. You
have been warned !!!

Interactive Shell

>>> ./jaxlctl shell
jaxl 1>
jaxl 1> // create a test message object
jaxl 1> $msg = new XMPPMsg(array('to' => 'friend@gmail.com'), 'Hello World!');
jaxl 2>
jaxl 2> // object to string conversion
jaxl 2> print_r($msg->to_string());
<message to="friend@gmail.com"><body>Hello World!</body></message>
jaxl 3>

Debug Running Instances

>>> ./jaxlctl attach XXXXX
jaxl 1>
jaxl 1> // create a message to be sent
jaxl 1> $msg = new XMPPMsg(array('to' => 'friend@gmail.com'), 'Hello World!');
jaxl 2>
jaxl 2> // this client is from the echo bot example
jaxl 2> global $client;
jaxl 3>
jaxl 3> // send the message packet
jaxl 3> $client->send($msg);
jaxl 4>
jaxl 4> // or we can directly do
jaxl 4> $client->send_chat_msg('friend@gmail.com', 'Hello World!');
jaxl 5>

Where XXXXX is the pid of running JAXL instance.

8 Chapter 1. Users Guide

Jaxl Documentation, Release 3.1.0

Logging Interface

JAXLLogger provides all the logging facilities that we will ever require. When logging to STDOUT it also colorizes
the log message depending upon its severity level. When logging to a file it can also do periodic log rotation.

log levels

• ERROR (red)

• WARNING (blue)

• NOTICE (yellow)

• INFO (green)

• DEBUG (white)

global logging methods

Following global methods for logging are available:

• error($msg)

• warning($msg)

• notice($msg)

• info($msg)

• debug($msg)

log/2

All the above global logging methods internally use log($msg, $verbosity) to output colored log message on
the terminal.

Cron Jobs

JAXLClock maintains a global clock which is updated after every iteration of the main select loop. During the clock
tick phase, JAXLClock also dispatches any scheduled cron jobs.

Lets try some cron job scheduling using Jaxl interactive shell:

>>> ./jaxlctl shell
jaxl 1>
jaxl 1> function do_job($params)
....... {
....... echo "cron job called";
....... }
jaxl 2>
jaxl 2> $ref = JAXLLoop::$clock->call_fun_after(
....... 4000,
....... 'do_job',
....... 'some_parameters'
.......);

1.4. Logging Interface 9

Jaxl Documentation, Release 3.1.0

jaxl 3> echo $ref;
1
jaxl 4>
cron job called
jaxl 5> quit
>>>

We just saw a live example of a cron job. Using JAXLClock::call_fun_after/3 we were able to call our
do_job function after 4000 microseconds.

Note: Since cron jobs are called inside main select loop, do not execute long running cron jobs using JAXLClock
else the main select loop will not be able to detect any new activity on watched file descriptors. In short, these cron
job callbacks are blocking.

In future, cron jobs might get executed in a seperate process space, overcoming the above limitation. Until then know
what your jobs are doing and for how long or execute them in a seperate process space yourself. You have been warned
!!!

one time jobs

call_fun_after($time, $callback, $args)

schedules $callback with $args after $time microseconds

periodic jobs

call_fun_periodic($time, $callback, $args)

schedules periodic $callback with $args after $time microseconds

cancel a job

cancel_fun_call($ref)

cancels a previously scheduled $callback

detecting bottlenecks

tc($callback, $args)

calculate execution time of a $callback with $args

10 Chapter 1. Users Guide

CHAPTER 2

XMPP Users Guide:

XMPP Examples

Echo Bot Client

include jaxl.php and initialize a new JAXL instance:

$client = new JAXL(array(
'jid' => 'user@domain.tld',
'pass' => 'password'

));

We just initialized a new JAXL instance by passing our jabber client jid and pass.

View list of available options that can be passed to JAXL constructor.

Next we need to register callbacks on events of interest using JAXL::add_cb/2 method as shown below:

function on_auth_success_callback()
{

global $client;
$client->set_status("available!"); // set your status
$client->get_vcard(); // fetch your vcard
$client->get_roster(); // fetch your roster list

}
$client->add_cb('on_auth_success', 'on_auth_success_callback');

function on_chat_message_callback($stanza)
{

global $client;

// echo back
$stanza->to = $stanza->from;
$stanza->from = $client->full_jid->to_string();
$client->send($stanza);

11

Jaxl Documentation, Release 3.1.0

}
$client->add_cb('on_chat_message', 'on_chat_message_callback');

function on_disconnect_callback()
{

JAXLLogger::debug("got on_disconnect cb");
}
$client->add_cb('on_disconnect', 'on_disconnect_callback');

We just registered callbacks on on_auth_success, on_chat_message and on_disconnect events that will
occur inside our configured JAXL instance lifecycle. We also passed a method that will be called (with parameters if
any) when the event has been detected.

See list of available event callbacks that we can hook to inside JAXL instance lifecycle.

Received $msg parameter with on_chat_message event callback above, will be an instance of XMPPMsg which
extends XMPPStanza class, that allows us easy to use access patterns to common XMPP stanza attributes like to,
from, type, id to name a few.

We were also able to access our xmpp client full jabber id by calling $client->full_jid. This attribute of JAXL
instance is available from on_auth_success event. full_jid attribute is an instance of XMPPJid.

To send our echo back $msg packet we called JAXL::send/1 which accepts a single parameter which MUST be an
instance of JAXLXml. Since XMPPStanza is a wrapper upon JAXLXml we can very well pass our modified $msg
object to the send method.

Read more about various XML Objects and how they make writing XMPP applications fun and easy. You can also add
custom access patterns upon received XMPPStanza objects. Since all access patterns are evaluated upon first access
and cached for later usage, adding hundreds of custom access patterns that retrieves information from 100th child of
received XML packet will not be an issue.

We will finally start our xmpp client by calling:

$client->start();

See list of available options that can be passed to the JAXL::start/2method. These options are particularly useful
for debugging and monitoring.

Echo Bot BOSH Client

Everything goes same for a cli BOSH client. To run above echo bot client example as a bosh client simply pass
additional parameters to JAXL constructor:

$client = new JAXL(array(
'jid' => 'user@domain.tld',
'pass' => 'password',
'bosh_url' => 'http://localhost:5280/http-bind'

));

You can even pass custom values for hold, wait and other attributes.

View list of available options that can be passed to JAXL constructor.

Echo Bot External Component

Again almost everything goes same for an external component except a few custom JAXL constructor parameter as
shown below:

12 Chapter 2. XMPP Users Guide:

Jaxl Documentation, Release 3.1.0

$comp = new JAXL(array(
// (required) component host and secret
'jid' => $argv[1],
'pass' => $argv[2],

// (required) destination socket
'host' => $argv[3],
'port' => $argv[4]

));

We will also need to include XEP0114 which implements Jabber Component XMPP Extension.

// (required)
$comp->require_xep(array(

'0114' // jabber component protocol
));

JAXL::require_xep/1 accepts an array of XEP numbers passed as strings.

Xml Objects

Jaxl library works with custom XML implementation which is similar to inbuild PHP XML functions but is lightweight
and easy to work with.

JAXLXml

JAXLXml is the base XML object. Open up Jaxl interactive shell and try some xml object creation/manipulation:

>>> ./jaxlctl shell
jaxl 1>
jaxl 1> $xml = new JAXLXml(
....... 'dummy',
....... 'dummy:packet',
....... array('attr1' => 'friend@gmail.com', 'attr2' => ''),
....... 'Hello World!'
.......);
jaxl 2> echo $xml->to_string();
<dummy xmlns="dummy:packet" attr1="friend@gmail.com" attr2="">Hello World!</dummy>
jaxl 3>

JAXLXml constructor instance accepts following parameters:

• JAXLXml($name, $ns, $attrs, $text)

• JAXLXml($name, $ns, $attrs)

• JAXLXml($name, $ns, $text)

• JAXLXml($name, $attrs, $text)

• JAXLXml($name, $attrs)

• JAXLXml($name, $ns)

• JAXLXml($name)

2.2. Xml Objects 13

Jaxl Documentation, Release 3.1.0

JAXLXml draws inspiration from StropheJS XML Builder class. Below are available methods for modifying and
manipulating an JAXLXml object:

• t($text, $append = false)

update text of current rover

• c($name, $ns = null, $attrs = array(), $text = null)

append a child node at current rover

• cnode($node)

append a JAXLXml child node at current rover

• up()

move rover to one step up the xml tree

• top()

move rover back to top element in the xml tree

• exists($name, $ns = null, $attrs = array())

checks if a child with $name exists, return child JAXLXml if found otherwise false. This function
returns at first matching child.

• update($name, $ns = null, $attrs = array(), $text = null)

update specified child element

• attrs($attrs)

merge new attrs with attributes of current rover

• match_attrs($attrs)

pass a kv pair of $attrs, return bool if all passed keys matches their respective values in the xml
packet

• to_string()

get string representation of the object

JAXLXml maintains a rover which points to the current level down the XML tree where manipulation is performed.

XMPPStanza

In the world of XMPP where everything incoming and outgoing payload is an JAXLXml instance code can become
nasty, developers can get lost in dirty XML manipulations spreaded all over the application code base and what not.
XML structures are not only unreadable for humans but even for machine.

While an instance of JAXLXml provide direct access to XML name, ns and text, it can become painful and
time consuming when trying to retrieve or modify a particular attrs or children. I was fed up of doing
getAttributeByName, setAttributeByName, getChild etc everytime i had to access common XMPP
Stanza attributes.

XMPPStanza is a wrapper on top of JAXLXml objects. Preserving all the functionalities of base JAXLXml instance
it also provide direct access to most common XMPP Stanza attributes like to, from, id, type etc. It also provides
a framework for adding custom access patterns.

XMPPMsg, XMPPPres and XMPPIq extends XMPPStanza and also add a few custom access patterns like body,
thread, subject, status, show etc.

Here is a list of default access patterns:

14 Chapter 2. XMPP Users Guide:

Jaxl Documentation, Release 3.1.0

1. name

2. ns

3. text

4. attrs

5. children

6. to

7. from

8. id

9. type

10. to_node

11. to_domain

12. to_resource

13. from_node

14. from_domain

15. from_resource

16. status

17. show

18. priority

19. body

20. thread

21. subject

2.2. Xml Objects 15

Jaxl Documentation, Release 3.1.0

XMPP Extensions (XEP)

Writing Custom XMPP Extension

Entity Discovery

Multi-User Chat

Direct MUC Invitation

Publish-Subscribe

In-Band User Registration

External Jabber Component

Entity Capabilities

Delayed Delivery

XMPP Over HTTP (Bosh)

16 Chapter 2. XMPP Users Guide:

CHAPTER 3

HTTP Users Guide:

HTTP Examples

Writing HTTP Server

Intialize an HTTPServer instance

$http = new HTTPServer();

By default HTTPServer will listen on port 9699. You can pass a port number as first parameter to change this.

Define a callback method that will accept all incoming HTTPRequest objects

function on_request($request)
{

if ($request->method == 'GET') {
$body = json_encode($request);
$request->ok($body, array('Content-Type' => 'application:json'));

} else {
$request->not_found();

}
}

on_request callback method will receive a HTTPRequest object instance. For this example, we will simply echo
back json encoded $request object for every http GET request.

Start http server:

$http->start('on_request');

We pass on_request method as first parameter to HTTPServer::start/1. If nothing is passed, requests will
fail with a default 404 not found error message

17

Jaxl Documentation, Release 3.1.0

Writing REST API Server

Intialize an HTTPServer instance

$http = new HTTPServer();

By default HTTPServer will listen on port 9699. You can pass a port number as first parameter to change this.

Define our REST resources callback methods:

function index($request)
{

$request->send_response(
200, array('Content-Type' => 'text/html'),

→˓'<html><head/><body><h1>Jaxl Http Server</h1>upload a file</body></html>'
);
$request->close();

}

function upload($request)
{

if ($request->method == 'GET') {
$request->send_response(

200, array('Content-Type' => 'text/html'),

→˓'<html><head/><body><h1>Jaxl Http Server</h1><form enctype="multipart/form-data" method="POST" action=""><input type="file" name="file"/><input type="submit" value="upload"/></form></body></html>'
);

} elseif ($request->method == 'POST') {
if ($request->body === null && $request->expect) {

$request->recv_body();
} else {

// got upload body, save it
JAXLLogger::debug("file upload complete, got ".strlen($request->body).

→˓" bytes of data");
$request->close();

}
}

}

Next we need to register dispatch rules for our callbacks above:

$index = array('index', '^/$');
$upload = array('upload', '^/upload', array('GET', 'POST'));
$rules = array($index, $upload);
$http->dispatch($rules);

Start REST api server:

$http->start();

18 Chapter 3. HTTP Users Guide:

Jaxl Documentation, Release 3.1.0

Make an HTTP request

HTTP Extensions

Dispatch Rules

Dispatch rules are convinient way of redirecting callback for a specific request pattern to a custom methods inside
your application. A dispatch rule consists of following 4 match information:

• $callback

reference to a method that will be callback’d when a matching request is received

• $pattern

a regular expression for matching on url path

• $methods

(optional) if not specified rule will match for all HTTP Methods. if specified, must be an array of
HTTP Method in uppercase.

• $extra

(reserved) this is for future where we will allow matching on headers, session, cookies etc.

Below are a few examples of dispatch rules:

$index = array('serve_index_page', '^/');
$upload_form = array('serve_upload_form', '^/upload', array('GET'));
$upload_handler = array('handle_upload_form', '^/upload', array('POST'));

Some REST CRUD dispatch rules:

$event_create = array('create_event', '^/event/create/$', array('PUT'));
$event_read = array('read_event', '^/event/(?P<pk>\d+)/$', array('GET', 'HEAD'));
$event_update = array('update_event', '^/event/(?P<pk>\d+)/$', array('POST'));
$event_delete = array('delete_event', '^/event/(?P<pk>\d+)/$', array('DELETE'));

Finally don’t forget to active these dispatch rules by doing:

$rules = array($index, $upload_form, $upload_handler, $event_create, $event_read,
→˓$event_update, $event_delete);
$http->dispatch($rules);

3.2. HTTP Extensions 19

	Users Guide
	Getting Started
	JAXL Instance
	./jaxlctl
	Logging Interface
	Cron Jobs

	XMPP Users Guide:
	XMPP Examples
	Xml Objects
	XMPP Extensions (XEP)

	HTTP Users Guide:
	HTTP Examples
	HTTP Extensions

